查看原文
其他

准确率超90%!AI预测心脏病发作及死亡率远胜人类

药明康德AI 药明康德AI 2019-12-05

药明康德AI/报道


近日,一项研究显示,机器学习在预测死亡或心脏病发作的表现已经超过了人类。通过分析950例患者的85个变量,以及长达6年的追踪研究,算法能够以超过90%的准确率确定与死亡和心脏病发作相关的变量模式。这项研究结果发表在了2019国际核心脏病和心脏CT会议(ICNC)上。


通常,在对患者进行治疗时,医生都使用“风险评分”的方法来决定治疗方案。但是,这些评分标准所参考的仅仅是少量的变量条件,普适却缺乏精准度。在对患者进行个性化治疗中缺乏“定制化”,因此,患者的多样性致病原因难以得到针对性治疗。


图片来源:123RF


这项研究的作者、来自芬兰Turku PET Centre的Luis Eduardo Juarez-Orozco博士表示,人类的思考维度是有限的,而高维度模式比单维模式更有助于预测个体结果。因此,就需要机器学习来大显身手了。通过重复学习和不断调整,机器学习可以利用大量的数据,来识别那些对于人类来说可能并不明显的复杂模式


共有950名胸痛患者参与了这项研究。这些患者接受了Turku PET Centre对于冠状动脉疾病的常规治疗方案。冠状动脉计算机断层扫描血管造影术(CCTA)获得了58份关于冠状动脉斑块、血管狭窄和钙化的数据。随后,那些图像中显示患病的患者接受了正电子发射断层扫描(PET),产生了17个血流变量。此外,研究人员从患者的医疗记录中获得了10个临床变量,包括性别、年龄、吸烟和糖尿病史等。 


在平均 6 年的随访中,所有的患者中出现了24例心脏病发作,以及49例死亡。研究人员将全部85个变量输入一个名为LogitBoost的机器学习算法,算法逐步从数据中学习并进行分析,从而找到有效预测心脏病发作或死亡的最佳模式。而在最终的验证结果中,算法的预测准确率超过了90%。


Juarez-Orozco博士表示:“医生已经收集了很多关于患者的信息。通过研究我们发现,机器学习可以更好地整合这些数据,并准确预测个体风险。这将为个性化治疗开辟新的方向,最终为患者带来更好的治疗结果。”


参考资料:

[1] Machine learning overtakes humans in predicting death or heart attack. Retrieved May 15, 2019, from https://www.eurekalert.org/pub_releases/2019-05/esoc-mlo050719.php


本文来自药明康德微信团队,欢迎转发到朋友圈,谢绝转载到其它平台。如有开设白名单需求,请在文章底部留言;如有其它合作需求,请联系wuxi_media@wuxiapptec.com。


更多精彩文章:


AI改变患者护理方式,脑部影像新锐公司募资1800万美元

AI“听音”辨别儿童抑郁,有望改善儿童心理健康

喜讯频传!检测心脏健康,又有两款AI产品获美国FDA批准

人工智能变革医疗领域,谷歌和哈佛科学家认为的最大助力是?

可提前5年预测乳腺癌风险!MIT科学家带来检测乳腺癌最新AI模型


大家关注的公众号越来越多,找不到“药明康德AI”怎么办?简单四步,将“药明康德AI”设置为星标公众号,问题即可解决。




点“好看”,分享AI健康新动态

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存